R/differentialNbinomWaldTestUMI4C.R
differentialNbinomWaldTestUMI4C.Rd
Using a UMI4C
object, infers the differences between conditions
specified in design
of the smooth monotone fitted values using a
Wald Test from DESeq2
package.
differentialNbinomWaldTestUMI4C( umi4c, design = ~condition, normalized = TRUE, padj_method = "fdr", query_regions = NULL, padj_threshold = 0.05, penalty = 0.1, alpha = 20 )
umi4c | UMI4C object as generated by |
---|---|
design | A |
normalized | Logical indicating if the function should return normalized or raw UMI counts. Default: TRUE. |
padj_method | The method to use for adjusting p-values, see
|
query_regions |
|
padj_threshold | Numeric indicating the adjusted p-value threshold to use to define significant differential contacts. Default: 0.05. |
penalty | Amount of smoothing to be applied to the estimated functional parameter. Default: 0.1. |
alpha | Approximate number of fragments desired for every basis function
of the B-spline basis. |
UMI4C
object with the DESeq2 Wald Test results.
This function fits the signal trend of a variance stabilized count values using a symmetric monotone fit for the distance dependency. Then scales the raw counts across the samples to obtain normalized factors. Finally, it detects differences between conditions applying the DESeq2 Wald Test.
if (FALSE) { files <- list.files(system.file("extdata", "CIITA", "count", package="UMI4Cats"), pattern = "*_counts.tsv.gz", full.names = TRUE ) # Create colData including all relevant information colData <- data.frame( sampleID = gsub("_counts.tsv.gz", "", basename(files)), file = files, stringsAsFactors = FALSE ) library(tidyr) colData <- colData %>% separate(sampleID, into = c("condition", "replicate", "viewpoint"), remove = FALSE ) # Make UMI-4C object including grouping by condition umi <- makeUMI4C( colData = colData, viewpoint_name = "CIITA", grouping = NULL, bait_expansion = 2e6 ) umi_wald <- differentialNbinomWaldTestUMI4C(umi4c=umi, design=~condition, alpha = 100) }